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A b s t r a c t  

A fruitful direction for future data mining research will 
be the development of techniques that incorporate privacy 
concerns. Specifically, we address the following question. 
Since the primary task in data mining is the development 
of models about aggregated data, can we develop accurate 
models without access to precise information in individual 
data records? We consider the concrete case of building a 
decision-tree classifier from tredning data in which the values 
of individual records have been perturbed. The resulting 
data records look very different from the original records 
and the distribution of data values is also very different 
from the original distribution. While it is not possible 
to accurately estimate original values in individual data 
records, we propose a-novel reconstruction procedure to 
accurately estimate the distribution of original data values. 
By using these reconstructed distributions, we are able 
to b~ld classifiers whose accuracy is comparable to the 
accuracy of classifiers built with the original data. 

1 I n t r o d u c t i o n  

Explosive progress in networking, storage, and proces- 
sor technologies has led to the creation of ultra large 
databases that  record unprecedented amount  of trans- 
actional information. In tandem with this dramatic 
increase in digital data, concerns about informational 
privacy have emerged globally [Tim97] [Eco99] [eu998] 
[Off98]. Privacy issues are further exacerbated now that  
the World Wide Web makes it easy for the new data  
to be automatically collected and added to databases 
[HE98] [Wes98a] [Wes98b] [Wes99] [CRA99a] [Cra99b]. 
The concerns over massive collection of da ta  are natu- 
rally extending to analytic tools applied to data. Data 
mining, with its promise to efficiently discover valuable, 
non-obvious information from large databases, is par- 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial edvent 
-age and that copies bear this notice and the ful| citation on the tirst page. 
To copy otherwise, to  republish, to post on servers or to  
redistribute "to lists, requires prior specific permission and/or a fee. 
ACM SIGMOD 2000 5•00 Dallas, TX, USA 
© 2000  ACM 1-58113-218-2 /00/0005. . .$5 ,00 

ticularly vulnerable to misuse [CM96] [The9S] [Off98] 
[ECB99]. 

A fruitful direction for future research in data  mining 
will be the development of techniques that  incorporate 
privacy concerns [Agr99]. Specifically, we address the 
following question. Since the primary task in data  
mining is the development of models about  aggregated 
data, can we develop accurate models without access to 
precise information in individual data  records? 

The underlying assumption is that  a person will be 
willing to selectively divulge information in exchange of 
value such models can provide [Wes99]. Example of the 
value provided include filtering to weed out unwanted 
information, better search results with less effort, and 
automatic  triggers [HS99]. A recent survey of web users 
[CRA99a] classified 17% of respondents as privacy fun- 
damentalists who will not provide data  to a web site 
even if privacy protection measures are in place. How- 
ever, the concerns of 56% of respondents constituting 
the pragmatic major i ty  were significantly reduced by 
the presence of privacy protection measures. The re- 
maining 27% were marginally concerned and generally 
willing to provide data  to web sites, although they of- 
ten expressed a mild general concern about privacy. An- 
other recent survey of web users [Wes99] found that  86% 
of respondents believe that  participation in information- 
for-benefits programs is a mat ter  of individual privacy 
choice. A resounding 82% said that  having a privacy 
policy would matter;  only 14% said that was not impor- 
tant  as long as they got benefit. Furthermore, people 
are not equally protective of every field in their da ta  
records [Wes99] [CRA99a]. Specifically, a person 

• may not divulge at all the values of certain fields; 

• may not mind giving true values of certain fields; 

• may be willing to give not true values but modified 
values of certain fields. 

Given a population that satisfies the above assump- 
tions, we address the concrete problem of building 
decision-tree classifiers [BFOS84] [Qui93] and show that  
that  it is possible to develop accurate models while re- 
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specting users' privacy concerns. Classification is one 
the most used tasks in data mining. Decision-tree clas- 
sifters are relatively fast, yield comprehensible models, 
and obtain similar and sometimes better accuracy than 
other classification methods [MST94]. 

Re la t ed  Work There has been extensive research in 
the area of statistical databases motivated by the de- 
sire to be able to provide statistical information (sum, 
count, average, maximum, minimum, pth percentile, 
etc.) without compromising sensitive information about 
individuals (see excellent surveys in [AW89] [Sho82].) 
The proposed techniques can be broadly classified into 
query restriction and data perturbation. The query re- 
striction family includes restricting the size of query 
result (e.g. [FelT2] [DDS79]), controlling the overlap 
amongst successive queries (e.g. [DJL79]), keeping au- 
dit trail of all answered queries and constantly check- 
ing for possible compromise (e.g. [CO82]), suppression 
of data cells of small size (e.g. [Cox80]), and cluster- 
ing entities into mutually exclusive atomic populations 
(e.g. [YC77]). The perturbation family includes swap- 
ping values between records (e.g. [Den82]), replacing the 
original database by a sample from the same distribu- 
tion (e.g. [LST83] [LCL85] [Rei84]), adding noise to the 
values in the database (e.g. [TYW84] [War65]), adding 
noise to the results of a query (e.g. [Bec80]), and sam- 
pling the result of a qu6ry (e.g. [DenS0]). There are neg- 
ative results showing that the proposed techniques can- 
not satisfy the conflicting objectives of providing high 
quality statistics and at the same time prevent exact 
or partial disclosure of individual information [AW89]. 
The statistical quality is measured in terms of bias, pre- 
cision, and consistency. Bias represents the difference 
between the unperturbed statistics and the expected 
value of its perturbed estimate. Precision refers to the 
variance of the estimators obtained by the users. Con- 
sistency represents the lack of contradictions and para- 
doxes. An exact disclosure occurs if by issuing one or 
more queries, a user is able to determine the exact value 
of a confidential attribute of an individual. A partial 
disclosure occurs if a user is able to obtain an estimator 
whose variance is below a given threshold. 

While we share with the statistical database liter- 
ature the goal of preventing disclosure of confidential 
information, obtaining high quality point estimates is 
not our goal. As we will see, it is sufficient for us to 
be able to reconstruct with sufficient accuracy the orig- 
inal distributions of the values of the confidential at- 
tributes. We adopt from the statistics literature two 
methods that a person may use in our system to mod- 
ify the value of a field [CS76]: 

Value-Class Membership. Partition the values into 
a set of disjoint, mutually-exhaustive classes and 
return the class into which the true value xi falls. 

* Value Distortion. Return a value xi + r instead 
of zi where r is a random value drawn from some 
distribution. 

We discuss further these methods and the level of 
privacy they provide in the next section. 

We do not use value dissociation, the third method 
proposed in [CS76]. In this method, a value returned for 
a field of a record is a tru e value, but from the same field 
in some other record. Interestingly, a recent proposal 
[ECB99] to construct perturbed training sets is based 
on this method. Our hesitation with this approach is 
that it is a global method and requires knowledge of 
values in other records. 

The problem of reconstructing original distribution 
from a given distribution can be viewed in the general 
framework of inverse problems [EHN96]. In [FJS97], 
it was shown that for smooth enough distributions 
(e.g. slowly varying time signals), it is possible to to 
fully recover original distribution from non-overlapping, 
contiguous partial sums. Such partial sums of true 
values are not available to us. We cannot make a 
priori assumptions about the original distribution; we 
only know the distribution used in randomizing values 
of an attribute. There is rich query optimization 
literature on estimating attribute distributions from 
partial information [BDF+97]. In the OLAP literature, 
there is work on approximating queries on sub-cubes 
from higher-level aggregations (e.g. [BS97]). However, 
these works did not have to cope with information that 
has been intentionally distorted. 

Closely related, but orthogonal to our work, is the 
extensive literature on access control and security (e.g. 
[Din78] [STg0] [Opp97] [RG98]). Whenever sensitive 
information is exchanged, it must be transmitted over a 
secure channel and stored securely. For the purposes of 
this paper, we assume that appropriate access controls 
and security procedures are in place and effective in 
preventing unauthorized access to the system. Other 
relevant work includes efforts to create tools and 
standards that provide platform for implementing a 
system such as ours (e.g. [Wor] [Ben99] [GWB97] 
[Cra99b] [AC99] [LM99] [LEW99]). 

Paper Organization We discuss privacy-preserving 
methods in Section 2. We also introduce a quanti- 
tative measure to evaluate the amount of privacy of- 
fered by a method and evaluate the proposed methods 
against this measure. In Section 3, we present our re- 
construction procedure for reconstructing the original 
data distribution given a perturbed distribution. We 
also present some empirical evidence of the efficacy of 
the reconstruction procedure. Section 4 describes tech- 
niques for building decision-tree classifiers from per- 
turbed training data using our reconstruction proce- 
dure. We present an experimental evaluation of the 
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accuracy of these techniques in Section 5. We conclude 
with a summary  and directions for future work in Sec- 
tion 6. 

We only consider numeric attr ibutes;  in Section 6, we 
briefly describe how we propose to extend this work to 
include categorical at tr ibutes.  We focus on at t r ibutes  
for which the users are willing to provide perturbed 
values. If  there is an a t t r ibute  for which users are 
not willing to provide even the per turbed value, we 
simply ignore the at tr ibute.  If  only some users do 
not provide the value, the training da ta  is t reated 
as containing records with missing values for which 
effective techniques exist in the literature [BFOS84] 
[Qui93]. 

2 Privacy-Preserving Methods 
Our basic approach to preserving privacy is to let 
users provide a modified value for sensitive at tr ibutes.  
The modified value may  be generated using custom 
code, a browser plug-in, or extensions to products such 
as Microsoft's Passport  (h t tp : / /www.passpor t . com)  or 
Novell's DigitalMe (ht tp : / /www.digi ta lme.com).  We 
consider two methods for modifying values [CS76]: 

V a l u e - C l a s s  M e m b e r s h i p  In this method,  the val- 
ues for an at t r ibute  are part i t ioned into a set of disjoint, 
mutually-exclusive classes. We consider the special case 
of d l s c r e t l z a t l o n  in which values for an a t t r ibute  are 
discretized into intervals. All intervals need not be of 
equal width. For example,  salary may  be discretized 
into 10K intervals for lower values and 50K intervals 
for higher values. Instead of a true a t t r ibute  value, the 
user provides the interval in which the value lies. Dis- 
cretization is the method used most  often for hiding 
individual values. 

V a l u e  D i s t o r t i o n  Return a value zi + r instead 
of zi where r is a random value drawn from some 
distribution. We consider two random distributions: 

• U n i f o r m :  The random variable has a uniform 
distribution, between [ - a ,  + a]. The mean of the 
random variable is 0. 

• G a u s s i a n :  The random variable has a normal  
distribution, with mean p = 0 and s tandard 
deviation o" [Fis63]. 

We fix the per turbat ion of an entity. Thus, it is not 
possible for snoopers to improve the est imates of the 
value of a field in a record by repeating queries [AW89]. 

2.1 Q u a n t i f y i n g  P r i v a c y  

For quantifying privacy provided by a method,  we use 
a measure based on how closely the original values of 
a modified at t r ibute  can be estimated. I f  it can be 

Confidence 
50% i 95% 99.9% 

I)iS'cretization ' 0.5 x W '! 0 :95x  W 0.999'x W 
Uniform 0.5 × 2a  i 0.95 × 2a  0.999 × 2a  
Gaussian 1.34 x ~r : 3.92 x a 6.8 x o" 

Table 1: Privacy Metrics 

es t imated with c% confidence that  a value • lies in 
the interval [xt, ~2], then the interval width (x2 - ~1) 
defines the amount  of privacy at c% confidence level. 

Table 1 shows the privacy offered by the different 
methods  using this metric. We have assumed tha t  the 
intervals are of equal width W in Discretization. 

Clearly, for 2a  -- W, Uniform and Discretization 
provide the same amount  of privacy. As o~ increases, 
privacy also increases. To keep up with Uniform, 
Discretization will have to increase the interval width, 
and hence reduce the number  of intervals. Note that  
we are interested in very high privacy. (We use 25%, 
50%, 100% and 200% of range of values of  an at t r ibute  
in our experiments.)  Hence Discretization will lead 
to poor model  accuracy compared to Uniform since 
all the values in a interval are modified to the same 
value. Gaussian provides significantly more privacy 
at  higher confidence levels compared to the other 
two methods.  We, therefore, focus on the two value 
distortion methods in the rest of the paper.  

3 Reconstructing The Original 
Distribution 

For the concept of using value distortion to protect 
privacy to be  useful, we need to be able to reconstruct 
the original da ta  distribution f rom the randomized data.  
Note that  we reconstruct distributions, not values in 
individual records. 

We view the n original da ta  values ~1, ~r2, • •., x,~ of a 
one-dimensional distribution as reMizations of n inde- 
pendent identically distributed (rid) random variables 
X1, X ~ , . . . ,  Xn ,  each with the same distribution as the 
random variable X.  To hide these da ta  values, n in- 
dependent random variables Y1, Y2, . . . ,  Y,~ have been 
used, each with the same distribution as a different ran- 
dom variable Y. Given zl÷Yl,  z2+Y~, • •., z,~+Y,~ (where 
Yi is the realization of Yi) and the cumulat ive distribu- 
tion function Fy for Y, we would like to est imate the 
cumulat ive distribution function F x  for X.  

R e c o n s t r u c t i o n  P r o b l e m  Given a cumulative dis- 
tribution Fy and the realizations of n lid random sam- 
ples X t  + Yz, X 2 +  Y2, . . . , X n  + Yn, estimate F x .  

Let the value of X i + Y ~  be w~(= x ~ + y i ) .  Note 
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that we do not have the individual values zi and yi, 
only their sum. We can use Bayes' rule [Fis63] to 
estimate the posterior distribution function Fir: (given 
that Xi+Y, = wt) for Xi,  assuming we know the density 
functions I x  a n d / r  for X and Y respectively. 

E~,(a) 

=f 
/ x , ( z  I x ~ + r l  = w~) dz 

.:x,+r, (~0~ I x, = ~) Ix, (~) d~ 
f X x+Y1 (W,) 

(using Bayes' rule for density functions) 

f f  /x,+r, ( ~  I x ,  ~ ~_) /xl (~____) 
oo ,E~o h,+r, (w~ I X~ = ~') Ix,  (~') d~' 

(expanding the denominator) 

f_aoo fx,+Y~ (wl IX1 = z) .fx, (z) dz 
I_~ h,+r, (w, I x~ = ~) h, (~) dz 
(inner integral is independent of outer) 

:-?o~ h ,  (~,-~) :x, (z) d~ 
f-moo .,fr, (w~ -z) fx, (z) dz 
(since Yi is independent of Xi)  

f:oo h ( ~ - ~ )  h ( ~ )  d~ 

(s ince/x,  -~ ?x a n d / y ,  _= f r )  

dz 

To estimate the posterior distribution function Fir 
given zi + y i , x ~ + y 2 , . . . , z n + y n ,  we average the 
distribution functions for each of the Xi. 

F j r ( a ) = ~ F j c , = ~ f . ~ o f r ( w ,  z ) f x ( z ) d z  
i = 1  i=l 

The corresponding posterior density function, f~¢ is 
obtained by differentiating FJ¢: 

1 ~ h(w,  - a) h(a)  
- -  o o  . . . . .  5,(a) = ,~ :2~ h (w, - ~1 :x (~1 d~ i=i 

(1) 

Given a sufficiently large number of samples, we expect 
f~  in the above equation to be very close to the 
real density function f x .  However, although we know 
f r ,  1 we do not know f x .  Hence we use the uniform 
distribution as the initial estimate f~ ,  and iteratively 
refine this estimate by applying Equation I. This 
algorithm is sketched out in Figure 1. 

Using Pa r t i t i on ing  to  Speed  C o m p u t a t i o n  As- 
sume a partitioning of the domain (of the data values) 
into intervals. We make two approximations: 

1For example, if Y is the standard normal, ]y(z) = 
(llx/~2~))e-='/~. 

(1) /~  := Uniform distribution 
(2) j := 0 / / I t e r a t i o n  number 

repeai~ 

(4) i : = j + i  
u n t i l  (stopping criterion met) 

Figure 1: Reconstruction Algorithm 

* We approximate the distance between z and wi (or 
between a and wi) with the distance between the 
mid-points of the intervals in which they lie, and 

• We approximate the density function f x  (a) with the 
average of the density function over the intervM in 
which a lies. 

Let I(z) denote the interval in which x lies, ra(Iv) 
the mid-point of interval Ip, and re(z) the mid- 
point of interval I(z).  Let & ( I v )  be the average 
value of the density function over the interval Iv, i.e. 
f x ( l v )  = lip Lx(z)dz / fI,, dz. By applying these two 
approximations to Equation 1, we get 

1 ~ h ( r n ( w i ) - m ( a ) ) h ( l ( a ) )  
f~(a) = ~ :-~o/Y (ra(wi)--m(z)) f x  (l(z)) dz 

i = 1  

Let Iv, p = 1 . . . k  denote the k intervals, and L v the 
width of interval I v . We can replace the integral in the 
denominator with a sum, since re(z) and f x ( I ( z ) )  do 
not change within an interval: 

1 ~ .  /y(m(w,) - re(a))fx(I(~)) /~(a) = g ~ ~ . . . . . . .  
= Et=i  fr(ra(w,) - m(I~)) f x ( I t )  Lt 

(2) 
We now compute the average value of the posterior 
density function over the interval Ip. 

/~(z)dz / r ,  

t ~ h(m(~o,)-m(~))fx(I(~))d~ /Z 
, = ,  ' 

(substituting Equation 2) 

E~=,/y(m(~0,)-,~(h)) fx  (.~) p i : ,  

(since I(z) = Iv within Ip) 

_ 1 _ ~  f y ( m ( w i ) - m ( I p ) ) f x ( I p )  
- n , = t  E ~ = i h ( r n ( w , ) - r n ( I t ) ) f x ( I t ) L ,  

(since fl, dz = Lp) 
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Figure 2: Reconstructing the Original Distribution 

Let N(Ip) be the number of points that  lie in interval Ip 
(i.e. number of elements in the set {wiIwi E Ip}. Since 
rn(wi) is the same for points that  lie within the same 
interval, 

/~ (i,) = 

fy(m(l,)-m(Ip)) fx(Ip) 
! ~2N(I,1 × ~ ,, 

n ,=t Zt=, fy(rn(l,)-rn(h)) fx(It)Lt 

Finally, let Pr~(X E Ip) be the posterior probability of 
X belonging to interval Ip, i.e. Pr ' (X E Ip) = / ) ( I p )  x 
Lp. Multiplying both sides of the above equation by 
Lp, and using Pr(X e Ip) = fx(Ip) x Lp, we get: 

Pr'(x e i,) = (3) 

~ ~ g(I,) x k  kIY(m(I') - m(/,)) Pr(X e I,) 
n ,=~ E~=~/y(m(/,) - m(/,)) Pr(X e Z~) 

We can now substitute Equation 3 in step 3 of the 
algorithm (Figure 1), and compute step 3 in O(m 2) 
time. 2 

~ A  n a i v e  i m p l e m e n t a t i o n  o f  E q u a t i o n  3 w i l l  l e a d  t o  O(m s) 
t i m e .  H o w e v e r ,  s i n c e  t h e  d e n o m i n a t o r  i s  i n d e p e n d e n t  o f  I p ,  w e  

c a n  r e - u s e  t h e  r e s u l t s  o f  t h a t  c o m p u t a t i o n  t o  g e t  O(m 2) t i m e .  

S t o p p i n g  C r i t e r i o n  With omniscience, we would 
stop when the reconstructed distribution was statisti- 
cally the same as the original distribution (using, say, 
the X 2 goodness-of-fit test [Cra46]). An alternative is to 
compare the observed randomized distribution with the 
result of randomizing the current estimate of the origi- 
nal distribution, and stop when these two distributions 
are statistically the same. The intuition is that if these 
two distributions are close to each other, we expect our 
estimate of the original distribution to also be close to 
the real distribution. Unfortunately, we found empir- 
ically that  the difference between the two randomized 
distributions is not a reliable indicator of the difference 
between the original and reconstructed distributions. 

Instead, we compare successive estimates of the 
original distribution, and stop when the difference 
between successive estimates becomes very small (1% 
of the threshold of the X 2 test in our implementation). 

Empirical Evaluation Two original distributions, 
"plateau" and "triangles", are shown by the "Original" 
line in Figures 2(a) and (b) respectively. We add a 
Gaussian random variable with mean 0 and standard 
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5 

Age Salary Credit Risk 
23 50K High 
17 30K ' High 
43 40K' ! High 
68 50K I L° ~. .... 
32 70K i Low 
20 20K' I High"  

(a) Training Set 

Age < 25 

/ / C ~ a l a r y  < 50K 

High Low 
(b) Decision Tree 

Figure 3: Credit Risk Example 

deviation of 0.25 to each point in the distribution. 
Thus a point with value, say, 0.25 has a 95% chance 
of being mapped to a value between -0.26 and 0.74, and 
a 99.9% chance of being mapped to a value between - 
0.6 and 1.1. The effect of this randomization is shown 
by the "Randomized" line. We apply the algorithm 
(with partitioning) in Figure 1, with a partition width 
of 0.05. The results are shown by the "Reconstructed" 
line. Notice that we are able to pick out the original 
shape of the distribution even though the randomized 
version looks nothing like the original. 

Figures 2(c) and (d) show that adding an uniform, 
discrete random variable between 0.5 and -0.5 to each 
point gives similar results. 

4 D e c i s i o n - T r e e  C l a s s i f i c a t i o n  o v e r  

R a n d o m i z e d  D a t a  " 

4.1 Background  

We begin with a brief review of decision tree classifi- 
cation, adapted from [MAR96] [SAM96]. A decision 
tree [BFOS84] [Qui93] is a class discriminator that re- 
cursively partitions the training set until each parti- 
tion consists entirely or dominantly of examples from 
the same class. Each non-leaf node of the tree con- 
tains a split point which is a test on one or more at- 
tributes and determines how the data is partitioned. 
Figure 3(b) shows a sample decision-tree classifier based 
on the training shown in Figure 3a. (Age < 25) and 
(Salary < 50K) are two split points that partition the 
records into High and Low credit risk classes. The de- 
cision tree can be used to screen future applicants by 
classifying them into the High or Low risk categories. 

A decision tree classifier is developed in two phases: 
a growth phase and a prune phase. In the growth 

Par t i t ion(Data  S) 
begin 

(1) i f  (most points in S are of the same class) t h e n  
(2) r e tu rn ;  
(3) for each attribute A do 
(4) evaluate splits on attribute A; 
(5) Use best split to partition S into $1 and $2; 

~'(6) Partition(S1); 
(7) Partition(S2); 

end  

In i t ia l  call: Partition(TrainingData) 

Figure 4: The tree-growth phase 

phase, the tree is built by recursively partitioning the 
data until each partition contains members belonging 
to the same class. Once the tree has been fully grown, 
it is pruned in the second phase to generalize the 
tree by removing dependence on statistical noise or 
variation that may be particular only to the training 
data. Figure 4 shows the algorithm for the growth 
phase. 

While growing the tree, the goal at each node is 
to determine the split point that "best" divides the 
training records belonging to that node. We use the gini 
index [BFOS84] to determine the goodness of a split. 
For a data set S containing examples from rn classes, 
gini(S) = 1 - ~ p~ where pj is the relative frequency of 
class j in S. If a split divides S into two subsets $1 and 
S~, the index of the divided data ginisvti~(S) is given 
by gini,vti~(S ) = ~gin i (S1)  + n~n gini(S2 ). Note that 
calculating this index requires only the distribution of 
the class values in each of the partitions. 

4.2 Tra in ing  Using R a n d o m i z e d  D a t a  

To induce decision trees using perturbed training data, 
we need to modify two key operations in the tree-growth 
phase (Figure 4): 

• Determining a split point (step 4). 

• Partitioning the data (step 5). 

We also need to resolve choices with respect to recon- 
structing original distribution: 

• Should we do a global reconstruction using the whole 
data or should we first partition the data by class 
and reconstruct separately for each class? 

• Should we do reconstruction once at the root node 
or do reconstruction at every node? 

We discuss below each of these issues. 
For pruning phase based on the Minimum Description 

Length principle [MAR96], no modification is needed. 
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D e t e r m i n i n g  sp l i t  p o i n t s  Since we parti t ion the do- 
main into intervals while reconstructing the distribu- 
tion, the candidate split points are the interval bound- 
aries. (In the standard algorithm, every mid-point be- 
tween any two consecutive at tr ibute values is a candi- 
date split point.) For each candidate split-point, we 
use the statistics from the reconstructed distribution to 
compute gini index. 

P a r t i t i o n i n g  t h e  D a t a  The reconstruction proce- 
dure gives us an estimate of the number of points in each 
interval. Let 11,-..Ira be the m intervals, and N(Ip) be 
the estimated number of points in interval Ip. We as- 
sociate each data value with an interval by sorting the 
values, and assigning the N(I1) lowest values to inter- 
va l /1 ,  and so on. a If the split occurs at the boundary 
of interval Ip-1 and Ip, then the points associated with 
intervMs I 1 , . . . ,  Ip-1 go to $1, and the points associ- 
ated with intervals I p , . . . ,  Im go to $2. We retain this 
association between points and intervals in case there is 
a split on the same attr ibute (at a different split-point) 
lower in the tree. 

R e c o n s t r u c t i n g  t h e  Or ig ina l  D i s t r i b u t i o n  We 
consider three different algorithms that  differ in when 
and how distributions are reconstructed: 

• G loba l :  Reconstruct the distribution for each 
at tr ibute once at the beginning using the complete 
perturbed training data. Induce decision tree using 
the reconstructed data. 

• ByClass :  For each attribute,  first split the training 
data  by class, then reconstruct the distributions 
separately for each class. Induce decision tree using 
the reconstructed data. 

• Local :  As in ByClass, for each attribute,  split the 
training data  by class and reconstruct distributions 
separately for each class. However, instead of doing 
reconstruction only once, reconstruction is done at 
each node (i.e. just before step 4 in Figure 4). To 
avoid over-fitting, reconstruction is stopped after the 
number of records belonging to a node become small. 

A final detail regarding reconstruction concerns the 
number of intervals into which the domain of an 
at tr ibute is partitioned. We use a heuristic to determine 
the number of intervals, m. We choose m such that  
there are an average of 100 points per interval. We 
then bound m to be between 10 and 100 intervals i.e. 
if rn < 10, rn is set to 10, etc. 

Clearly, Local is the most expensive algorithm in 
terms of execution time. Global is the cheapest 

8The interval associated with a da ta  value should not  be 
considered an es t imator  of the original value of tha t  da ta  value. 

algorithm. ByClass falls in between. However, it 
is closer to Global than Local since reconstruction is 
done in ByClass only at the root node, whereas it 
is repeated at  each node in Local. We empirically 
evaluate the classification accuracy characteristics of 
these algorithms in the next section. 

4.3 D e p l o y m e n t  

In many applications, the goal of building a classifi- 
cation model is to develop an understanding of differ- 
ent classes in the target population. The techniques 
just described directly apply to such applications. In 
other applications, a classification model is used for pre- 
dicting the class of a new object without a preassigned 
class label. For this prediction to be accurate, although 
we have been able to build an accurate model using 
randomized data,  the application needs access to non- 
perturbed da ta  which the user is not willing to disclose. 
The solution to this di lemma is to structure the applica- 
tion such that  the classification model is shipped to the 
user and applied there. For instance, if the classifica- 
tion model is being used to filter information relevant to 
a user, the classifier may be first applied on the client 
side over the original da ta  and the information to be 
presented is filtered using the results of classification. 

5 E x p e r i m e n t a l  R e s u l t s  

5.1 M e t h o d o l o g y  

We compare the classification accuracy of Global, 
ByClass, and Local algorithms against each other and 
with respect to the following benchmarks: 

• Or ig ina l ,  the result of inducing the classifier on 
unperturbed trMning data  without randomization. 

• R a n d o m i z e d ,  the result of inducing the classifier 
on perturbed data  but  without making any correc- 
tions for randomization. 

Clearly, we want to come as close to Original in accuracy 
as possible. The accuracy gain over Randomized reflects 
the advantage of reconstruction. 

We used the synthetic da ta  generator from [AGI+92] 
for our experiments. We used a training set of 
100,000 records and a test set of 5,000 records, equally 
split between the two classes. Table 2 describes 
the nine attributes,  and Table 3 summarizes the 
five classification functions. These functions vary 
from having quite simple decision surface (Function 
1) to complex non-linear surfaces (Functions 4 and 
5). Functions 2 and 3 may look easy, but are quite 
difficult. The distribution of values on age are identical 
for both classes, unless the classifier first splits on salary. 
Further, the classifier has to exactly find five split-points 
on salary: 25, 50, 75, 100 and 125 to perfectly classify 
the data. The width of each of these intervals is less 
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Group A Group B 
Function 1 (age < 40) V ((60 _< age) otherwise 
Function 2 ((age < 40) A (50K < salary _< 100K)) V otherwise 

((40 ~ age < 60) A (75K < salary > 125K)) V 
((age > 60) A (25K < sa la ry  < 75K)) 

Funct ion  3 ((age < 40) A (((elevel E [0..1]) A (25K < sa la ry  < 75K)) V otherwise 
((elevel e [2..3]) ^ (50K < salary < 100K)))) V 

((40 _< age < 60) A (((elevei E [1..3]) A (50K _< sa la ry  < 100K)) V 
(((elevei = 4)) ^ (75K < sa|ary _< 12SK)))) V 

((age > 60) A (((elevel E [2..4]) A (5OK < salary < 100g)) V 
((elevei = 1)) A (25K < sa lary  < 75K)))) 

Funct ion  4 (0.67 x (salary + commiss ion)  - 0.2 x loan - 10K) > 0 otherwise 
Func t ion  5 (0.67 × (salary + commiss ion)  - 0.2 x loan + 0.2 × equi ty  - 10K) > 0 otherwise 

where equi ty  = 0.1 × hvalue  × max(hyears  - 20, 0) 

Table 3: Description of Functions 

Attribute Description 
salary  
commiss ion  

age 
elevel 
car 

zipcode 
hvalue 

hyears 
loan 

uniformly distributed from 20K to 150K 
sa lary  > 75K =~ commiss ion  = 0 else 
uniformly distributed from 10K to 75K 
uniformly distributed from 20 to 80 
uniformly chosen from 0 to 4 
uniformly, chosen from 1 to 20 
uniformly chosen from 9 zipcodes 
uniformly distributed from k × 50K 
to k x 150K, where k E {0. . .  9} 
depends on z ipcode  
uniformly distributed from 1 to 30 
uniformly distributed from 0 to 500K 

Table 2: At t r ibute  Descriptions 

than  20% of the range of the at t r ibute .  Function 2 
also contains embedded XORs which are known to be 
troublesome for decision tree classifiers. 

Perturbed training data is generated using both 
Uniform and Gaussian methods (Section 2). All 
accuracy results involving randomization were averaged 
over 10 runs. We experimented with large values for the 
amount of desired privacy: ranging from 25% to 200% 
of the range of values of an attribute. The confidence 
threshold for the privacy level is taken to be 95% in 
all our experiments. Recall that if it can be estimated 
with 95% confidence that a value x lies in the interval 
[~i, z2], then the interval width (z2- xz) defines 
the amount of privacy at 95% confidence level. For 
example, at 50% privacy, Salary cannot be estimated 
(with 95% confidence) any closer than an interval of 
width 65K, which is half the entire range for Salary. 
Similarly, at 100% privacy, Age cannot be estimated 
(with 95% confidence) any closer than an interval of 
width 60, which is the entire range for Age. 

5.2 C o m p a r i n g  t h e  C l a s s i f i c a t i o n  
A l g o r i t h m s  

Figure 5 shows the accuracy of the algori thms for 
Uniform and Gaussian perturbat ions,  for privacy levels 
of 25% and 100%. The x-axis shows the five functions 
f rom Table 3, and the y-axis the accuracy. 

Overall, the ByClass and Local algori thms do re- 
markably  well at 25% and 50% privacy, with accuracy 
numbers  very close to those on the original data.  Even 
at  as high as 100% privacy, the algori thms are within 
5% (absolute) of the original accuracy for Functions 1, 4 
and 5 and within 15% for Functions 2 and 3. The advan- 
tage of reconstruction can be seen from these graphs by 
comparing the accuracy of these algori thms with Ran- 
domized. 

Overall, the Global algorithm performs worse than 
ByClass and Local algorithms. The deficiency of 
Global is that it uses the same merged distribution 
for all the classes during reconstruction of the original 
distribution. It fares well on Functions 4 and 5, but 
the performance of even Randomized is quite close to 
Original on these functions. These functions have a 
diagonal decision surface, with equal number  of points 
on each side of the diagonal surface. Hence addition 
of noise does not significantly affect the abili ty of 
the classifier to approximate this surface by hyper- 
rectangles. 

As we stated in the beginning of this section, though 
they might look easy, Functions 2 and 3 are quite 
difficult. The classifier has to find five sprit-points on 
salary and the width of each interval is 25K. Observe 
that the range over which the randomizing function 
spreads 95% of the values is more than 5 times the width 
of the splits at 100% privacy. Hence even small errors 
in reconstruction result in the split points being a little 
off, and accuracy drops. 

The poor accuracy of Original for Function 2 at 25% 
privacy may appear anomalous. The explanation lies in 

446 



Pr ivacy  Level = 2 5 %  

Gaussian 
100 , ... . , 95~ 

N 90 

8 85 
< 

80 

75 
Fn l  

Original 
Local -+--- 

ByClass -~.-- 
Global ..... . . . . .  

Randomized -~ .... 

! 

Fn2 

t 

Fn3 
Dataset 

t 

Fn4 

100 

95 

90 

o 

~ 85 

80 

75  
Fn5 Fn l  

Uniform 

"x J ~  

Original , 
Local -+--- 

ByClass - o - -  
Global • -.* ..... 

Randomized - -  .... 

! 1 ! 

Fn2 Fn3 Fn4 
Dataset 

Fn5 

Privacy Level = 100% 
Gaussian 

I .... % , .  
. ~  " "  ^ .  , j ,  

~ 770 ' ~  ...... 
o 
o 
< Original 

Local -+--- 
60 ByClass -~--- 

Global - *  ...... 
Randomized ...... 

5O 

Fn l  

t I I 

Fn2 Fn3 Fn4 
Dataset 

Fn5 

1 0 0  

Uniform 

÷ / ¢ 

70 ..................... .../"~" ........ ./'/ 
............ ~¢~,.. i t 

., Original 
• =' Local -+--- 

60 ByClass -o--- 
..,,. ..... Global "'-~ ..... 

............... Randomized -~ .... 
5 0  

I I 1 

Fnl  Fn2 Fn3 Fn4 Fn5 
Dataset 

o 

o 
O < 

Figure 5: Classification Accuracy 

there being a buried XOR in Function 2. When Original 
reaches the corresponding node, it stops because it does 
not find any split point that increases gini. However, 
due to the perturbation of data with randomization, the 
other algorithms find a "false" split point and proceed 
further to find the real split. 

5.3 Varying Pr ivacy 

Figure 6 shows the effect of varying the amount of 
privacy for the ByClass algorithm. (We omitted the 
graph for Function 4 since the results were almost 
identical to those for Function 5.) Similar results were 
obtained for the Local algorithm. The x-axis shows the 
privacy level, ranging from 10% to 200%, and the y-axis 
the accuracy of the algorithms. The legend ByClass(G) 
refers to ByClass with Gaussian, Random(U) refers to 
Randomized with Uniform, etc. 

Two important conclusions can be drawn from these 
graphs: 

• Although Uniform perturbation of original data 
results in a much large degradation of accuracy 
before correction compared to Gaussian, the effect 
of both distributions is quite comparable after 
correction. 

• The accuracy of the classifier developed using 
perturbed data, although not identical, comes fairly 
close to Original (i.e. accuracy obtained from using 
unperturbed data). 

6 Conclusions and Fu tu re  W o r k  

In this paper, we studied the technical feasibility of 
realizing privacy-preserving data mining. The basic 
premise was that the sensitive values in a user's record 
will be perturbed using a randomizing function so 
that they cannot be estimated with sufficient precision. 
Randomization can be done using Gaussian or Uniform 
perturbations. The question we addressed was whether, 
given a large number of users who do this perturbation, 
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Figure 6: Change in Accuracy with Privacy 

can we still construct sufficiently accurate predictive 
models. 

For the specific case of decision-tree classification, 
we found two effective algorithms, ByClass and Local. 
The algorithms rely on a Bayesian procedure for 
correcting perturbed distributions. We emphasize that  
we reconstruct distributions, not individual records, 
thus preserving privacy of individual records. As a 
mat ter  of fact, if the user perturbs a sensitive value 
once and always return the same perturbed value, 
the estimate of the true value cannot be improved by 
successive queries. We found in our empirical evaluation 
that: 

• ByClass and Local are both effective in correcting 
for the effects of perturbation. At 25% and 50% 
privacy levels, the accuracy numbers are close to 
those on the original data. Even at 100% privacy, 
the algorithms were within 5% to 15% (absolute) of 
the original accuracy. Recall that  if privacy were 

to be measured with 95% confidence, 100% privacy 
means that  the true value cannot be estimated any 
closer than an interval of width which is the entire 
range for the corresponding: attribute.  We believe 
that  a small drop in accuracy is a desirable trade-off 
for privacy in many situations. 

Local performed marginally better than ByClass, 
but  required considerably more computation.  Inves- 
t igation of what characteristics might make Local a 
winner over ByClass (if at  all) is an open problem. 

For the same privacy level, Uniform perturbation 
did significantly worse than Gaussian before correct- 
ing for randomization, but  only slightly worse after 
correcting for randomization. Hence the choice be- 
tween applying the Uniform or Gaussian distribu- 
tions to preserve privacy should be based on other 
considerations: Gaussian provides more privacy at 
higher confidence thresholds, but Uniform may be 
easier to explain to users. 
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F u t u r e  W o r k  We plan to investigate the effectiveness 
of randomization with reconstruction for categorical at- 
tributes. The basic idea is to randomize each categorical 
value as follows: retain the value with probability p, and 
choose one of the other values at random with proba- 
bility 1 - p .  We may then derive an equation similar 
to Equation 1, and iteratively reconstruct the original 
distribution of values. Alternately, we may be able to 
extend the anMyticM approach presented in [War65] for 
boolean attributes to derive an equation that  directly 
gives estimates of the original distribution. 

A c k n o w l e d g m e n t s  A hallway conversation with 
Robert Morris provided initial impetus for this work. 
Peter Haas diligently checked the soundness of the 
reconstruction procedure. 
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